Eigenvalues of Schrödinger operators near thresholds: two term approximation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-variational Approximation of Discrete Eigenvalues of Self-adjoint Operators

We establish sufficiency conditions in order to achieve approximation to discrete eigenvalues of self-adjoint operators in the second-order projection method suggested recently by Levitin and Shargorodsky, [15]. We find explicit estimates for the eigenvalue error and study in detail two concrete model examples. Our results show that, unlike the majority of the standard methods, second-order pro...

متن کامل

On Approximation of the Eigenvalues of Perturbed Periodic Schrödinger Operators

This paper addresses the problem of computing the eigenvalues lying in the gaps of the essential spectrum of a periodic Schrödinger operator perturbed by a fast decreasing potential. We use a recently developed technique, the so called quadratic projection method, in order to achieve convergence free from spectral pollution. We describe the theoretical foundations of the method in detail, and i...

متن کامل

On the Approximation of Isolated Eigenvalues of Ordinary Differential Operators

We extend a result of Stolz and Weidmann on the approximation of isolated eigenvalues of singular Sturm–Liouville and Dirac operators by the eigenvalues of regular operators.

متن کامل

Analysis of Periodic Schrödinger Operators: Regularity and Approximation of Eigenvalues

Let V be a real valued potential that is smooth everywhere on R3, except at a periodic, discrete set of points, where it has singularities of the Coulomb form Z/r. We assume that the potential V is periodic with period lattice L. We study the spectrum of the Schrödinger operator H = −∆ + V acting on the space of Bloch waves with arbitrary, but fixed, wavevector k. Let T := R3/L. Let u be an eig...

متن کامل

Convergence of Schrödinger Operators

For a large class, containing the Kato class, of real-valued Radon measures m on R the operators −∆ + ε∆ + m in L(R, dx) tend to the operator −∆ +m in the norm resolvent sense, as ε tends to zero. If d ≤ 3 and a sequence (μn) of finite real-valued Radon measures on R converges to the finite real-valued Radon measure m weakly and, in addition, supn∈N μ ± n (R) < ∞, then the operators −∆ + ε∆ + μ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Methods of Functional Analysis and Topology

سال: 2020

ISSN: 1029-3531

DOI: 10.31392/mfat-npu26_1.2020.06